Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Predicting Research Outcomes | Statistical Analysis and Automation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Researchers

bookChallenge: Predicting Research Outcomes

In research, predicting outcomes based on multiple variables is a common task. Linear regression is a widely used method for modeling the relationship between one or more features and a continuous outcome. By using the scikit-learn library, you can efficiently fit a regression model, extract its coefficients, and evaluate its performance with the R^2 score. This challenge provides you with a DataFrame containing feature1, feature2, and outcome columns. Your goal is to fit a linear regression model using both features to predict the outcome, return the model's coefficients and R^2 score, and print a brief interpretation of the results.

Uppgift

Swipe to start coding

Given a DataFrame with columns 'feature1', 'feature2', and 'outcome', fit a linear regression model using both features to predict 'outcome'. Return the model's coefficients and R² score, and print a brief interpretation of the results.

  • Select 'feature1' and 'feature2' as input features and 'outcome' as the target.
  • Fit a linear regression model using the selected features.
  • Obtain the coefficients of the fitted model.
  • Compute the R² score of the model.
  • Print an interpretation including the coefficients and R² score.
  • Return the coefficients and R² score.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 7
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Predicting Research Outcomes

Svep för att visa menyn

In research, predicting outcomes based on multiple variables is a common task. Linear regression is a widely used method for modeling the relationship between one or more features and a continuous outcome. By using the scikit-learn library, you can efficiently fit a regression model, extract its coefficients, and evaluate its performance with the R^2 score. This challenge provides you with a DataFrame containing feature1, feature2, and outcome columns. Your goal is to fit a linear regression model using both features to predict the outcome, return the model's coefficients and R^2 score, and print a brief interpretation of the results.

Uppgift

Swipe to start coding

Given a DataFrame with columns 'feature1', 'feature2', and 'outcome', fit a linear regression model using both features to predict 'outcome'. Return the model's coefficients and R² score, and print a brief interpretation of the results.

  • Select 'feature1' and 'feature2' as input features and 'outcome' as the target.
  • Fit a linear regression model using the selected features.
  • Obtain the coefficients of the fitted model.
  • Compute the R² score of the model.
  • Print an interpretation including the coefficients and R² score.
  • Return the coefficients and R² score.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 7
single

single

some-alt