Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Implement a Bloom Filter | Probabilistic & Streaming Data Structures
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Data Structures and Algorithms for Scalable Systems

bookChallenge: Implement a Bloom Filter

Uppgift

Swipe to start coding

Implement a BloomFilter class that performs probabilistic membership testing using a bit array and multiple hash functions.

Your implementation must follow these rules:

  • The filter uses a bit array of length size, initialized with zeros.
  • The filter uses exactly hash_count hash functions for each inserted item.
  • The private method _hashes(item) must produce a list of hash_count integer indices, each in the range [0, size).
  • The add(item) method must set all corresponding bits for the item’s hash indices.
  • The contains(item) method returns:
    • True if all bits for the item’s hash indices are set
    • False otherwise
  • The filter may have false positives, but must never produce false negatives (i.e., must never return False for an item that was previously added).

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Implement a Bloom Filter

Svep för att visa menyn

Uppgift

Swipe to start coding

Implement a BloomFilter class that performs probabilistic membership testing using a bit array and multiple hash functions.

Your implementation must follow these rules:

  • The filter uses a bit array of length size, initialized with zeros.
  • The filter uses exactly hash_count hash functions for each inserted item.
  • The private method _hashes(item) must produce a list of hash_count integer indices, each in the range [0, size).
  • The add(item) method must set all corresponding bits for the item’s hash indices.
  • The contains(item) method returns:
    • True if all bits for the item’s hash indices are set
    • False otherwise
  • The filter may have false positives, but must never produce false negatives (i.e., must never return False for an item that was previously added).

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt