Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Predicting Prices Using Two Features | Section
Practice
Projects
Quizzes & Challenges
Frågesporter
Challenges
/
Regression with Python

bookChallenge: Predicting Prices Using Two Features

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Uppgift

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Lösning

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 10
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Predicting Prices Using Two Features

Svep för att visa menyn

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Uppgift

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Lösning

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 10
single

single

some-alt