Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära LLM Tweet Generation Loop | Omvandla ODT till ett Visuellt Arbetsflöde
AI-Automationsarbetsflöden med n8n

bookLLM Tweet Generation Loop

Process each RSS item into a single tweet by following a simple, repeatable flow: normalized RSS → Loop Over Items (batch = 1) → AI tweet → Airtable row. This approach keeps the workflow minimal, reliable, and easy to scale. Instead of sending large arrays to the LLM, you feed one clean article at a time for precise, consistent results.

  • RSS item: already cleaned or normalized;
  • Loop Over Items (Split in Batches): batch size = 1;
  • AI Agent: generates one tweet;
  • Airtable → Create Record: stores the tweet;

This approach ensures predictable outputs, easier debugging, and lets you stop or restart mid-run without disrupting the entire workflow.

Note
Note

If you see duplicates (similar headlines), dedupe upstream by GUID/title or filter before the loop. If Airtable rejects writes, re-check table/field names and types.

You can now turn any normalized RSS feed into tweets that post reliably, store them in Airtable with source tracking, and safely resume without duplicates. By adjusting one system message, you control tone and length, keeping the workflow scalable and rate-limit friendly.

question mark

What's the main benefit of storing each tweet with its source GUID in Airtable?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 3

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Awesome!

Completion rate improved to 4.17

bookLLM Tweet Generation Loop

Svep för att visa menyn

Process each RSS item into a single tweet by following a simple, repeatable flow: normalized RSS → Loop Over Items (batch = 1) → AI tweet → Airtable row. This approach keeps the workflow minimal, reliable, and easy to scale. Instead of sending large arrays to the LLM, you feed one clean article at a time for precise, consistent results.

  • RSS item: already cleaned or normalized;
  • Loop Over Items (Split in Batches): batch size = 1;
  • AI Agent: generates one tweet;
  • Airtable → Create Record: stores the tweet;

This approach ensures predictable outputs, easier debugging, and lets you stop or restart mid-run without disrupting the entire workflow.

Note
Note

If you see duplicates (similar headlines), dedupe upstream by GUID/title or filter before the loop. If Airtable rejects writes, re-check table/field names and types.

You can now turn any normalized RSS feed into tweets that post reliably, store them in Airtable with source tracking, and safely resume without duplicates. By adjusting one system message, you control tone and length, keeping the workflow scalable and rate-limit friendly.

question mark

What's the main benefit of storing each tweet with its source GUID in Airtable?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 3
some-alt