Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Calculate Beam Deflection | Structural Analysis with Python
Python for Civil Engineers

bookChallenge: Calculate Beam Deflection

Understanding how beams deflect under load is a fundamental part of structural engineering, as it helps ensure that structures remain safe, serviceable, and comfortable for users. Earlier, you explored how to model beams and apply loads in Python. Now, you will build on that knowledge by focusing on the calculation of maximum deflection for a simply supported beam subjected to a uniform distributed load. This calculation is vital in real-world design, as excessive deflection may compromise both the safety and usability of a structure. The standard formula for the maximum deflection of such a beam is:

[ \delta_{max} = \frac{5 w L^4}{384 E I} ]

where w is the load per unit length, L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia.

Uppgift

Swipe to start coding

Write a function that computes the maximum deflection of a simply supported beam subjected to a uniform distributed load.

  • Use the formula (5 * w * L ** 4) / (384 * E * I) to calculate the maximum deflection.
  • The function should accept four parameters: w, L, E, and I.
  • Return the calculated maximum deflection.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain what each variable in the formula represents?

Can you show an example calculation using this formula?

What are typical values for E and I for common materials?

close

bookChallenge: Calculate Beam Deflection

Svep för att visa menyn

Understanding how beams deflect under load is a fundamental part of structural engineering, as it helps ensure that structures remain safe, serviceable, and comfortable for users. Earlier, you explored how to model beams and apply loads in Python. Now, you will build on that knowledge by focusing on the calculation of maximum deflection for a simply supported beam subjected to a uniform distributed load. This calculation is vital in real-world design, as excessive deflection may compromise both the safety and usability of a structure. The standard formula for the maximum deflection of such a beam is:

[ \delta_{max} = \frac{5 w L^4}{384 E I} ]

where w is the load per unit length, L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia.

Uppgift

Swipe to start coding

Write a function that computes the maximum deflection of a simply supported beam subjected to a uniform distributed load.

  • Use the formula (5 * w * L ** 4) / (384 * E * I) to calculate the maximum deflection.
  • The function should accept four parameters: w, L, E, and I.
  • Return the calculated maximum deflection.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

some-alt