Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Analyzing Construction Progress Data | Materials and Construction Data Analysis
Python for Civil Engineers

bookAnalyzing Construction Progress Data

Tracking construction progress is essential for successful project management in civil engineering. By collecting data such as daily work quantities or completion percentages, you can monitor how a project advances relative to its schedule. This data-driven approach helps ensure that construction milestones are met and resources are efficiently allocated.

123456789101112
# Daily completed work quantities in cubic meters daily_work = [10, 12, 8, 15, 11, 13, 9, 14, 10, 12] # Calculate cumulative progress cumulative_progress = [] total = 0 for qty in daily_work: total += qty cumulative_progress.append(total) print("Daily completed work:", daily_work) print("Cumulative progress:", cumulative_progress)
copy

Cumulative progress shows the total amount of work completed up to each day, providing a clear picture of overall project advancement. By reviewing cumulative progress, you can quickly assess whether the project is on track, ahead, or behind schedule. This information is crucial for identifying potential delays early, allowing you to take corrective action before issues escalate.

12345678910111213141516171819202122
import matplotlib.pyplot as plt # Sample data days = list(range(1, 11)) cumulative_progress = [10, 22, 30, 45, 56, 69, 78, 92, 102, 114] milestone_days = [4, 8] milestone_values = [cumulative_progress[3], cumulative_progress[7]] plt.figure(figsize=(8, 4)) plt.plot(days, cumulative_progress, marker='o', label='Cumulative Progress') plt.xlabel("Day") plt.ylabel("Cumulative Work (m³)") plt.title("Construction Progress Over Time") plt.grid(True) # Annotate milestones for day, value in zip(milestone_days, milestone_values): plt.annotate(f"Milestone\nDay {day}", (day, value), textcoords="offset points", xytext=(0,10), ha='center', color='red') plt.legend() plt.tight_layout() plt.show()
copy

1. What is the benefit of plotting cumulative progress in construction projects?

2. How can Python help identify project delays from progress data?

3. Fill in the blank: The ______ function in matplotlib is used to add text annotations to a plot.

question mark

What is the benefit of plotting cumulative progress in construction projects?

Select the correct answer

question mark

How can Python help identify project delays from progress data?

Select the correct answer

question-icon

Fill in the blank: The ______ function in matplotlib is used to add text annotations to a plot.

function in matplotlib is used to add text annotations to a plot.

Click or drag`n`drop items and fill in the blanks

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 6

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

bookAnalyzing Construction Progress Data

Svep för att visa menyn

Tracking construction progress is essential for successful project management in civil engineering. By collecting data such as daily work quantities or completion percentages, you can monitor how a project advances relative to its schedule. This data-driven approach helps ensure that construction milestones are met and resources are efficiently allocated.

123456789101112
# Daily completed work quantities in cubic meters daily_work = [10, 12, 8, 15, 11, 13, 9, 14, 10, 12] # Calculate cumulative progress cumulative_progress = [] total = 0 for qty in daily_work: total += qty cumulative_progress.append(total) print("Daily completed work:", daily_work) print("Cumulative progress:", cumulative_progress)
copy

Cumulative progress shows the total amount of work completed up to each day, providing a clear picture of overall project advancement. By reviewing cumulative progress, you can quickly assess whether the project is on track, ahead, or behind schedule. This information is crucial for identifying potential delays early, allowing you to take corrective action before issues escalate.

12345678910111213141516171819202122
import matplotlib.pyplot as plt # Sample data days = list(range(1, 11)) cumulative_progress = [10, 22, 30, 45, 56, 69, 78, 92, 102, 114] milestone_days = [4, 8] milestone_values = [cumulative_progress[3], cumulative_progress[7]] plt.figure(figsize=(8, 4)) plt.plot(days, cumulative_progress, marker='o', label='Cumulative Progress') plt.xlabel("Day") plt.ylabel("Cumulative Work (m³)") plt.title("Construction Progress Over Time") plt.grid(True) # Annotate milestones for day, value in zip(milestone_days, milestone_values): plt.annotate(f"Milestone\nDay {day}", (day, value), textcoords="offset points", xytext=(0,10), ha='center', color='red') plt.legend() plt.tight_layout() plt.show()
copy

1. What is the benefit of plotting cumulative progress in construction projects?

2. How can Python help identify project delays from progress data?

3. Fill in the blank: The ______ function in matplotlib is used to add text annotations to a plot.

question mark

What is the benefit of plotting cumulative progress in construction projects?

Select the correct answer

question mark

How can Python help identify project delays from progress data?

Select the correct answer

question-icon

Fill in the blank: The ______ function in matplotlib is used to add text annotations to a plot.

function in matplotlib is used to add text annotations to a plot.

Click or drag`n`drop items and fill in the blanks

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 6
some-alt