Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Find Similar Drug-like Molecules | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Find Similar Drug-like Molecules

Uppgift

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Find Similar Drug-like Molecules

Svep för att visa menyn

Uppgift

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
single

single

some-alt