Challenge: Cluster a Compound Library
Swipe to start coding
Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.
- Parse each SMILES string into an RDKit molecule.
- Generate Morgan fingerprints for each molecule.
- Compare fingerprints pairwise using Tanimoto similarity.
- Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
- Return a list of clusters, where each cluster is a list of SMILES strings.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Fantastiskt!
Completion betyg förbättrat till 6.25
Challenge: Cluster a Compound Library
Svep för att visa menyn
Swipe to start coding
Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.
- Parse each SMILES string into an RDKit molecule.
- Generate Morgan fingerprints for each molecule.
- Compare fingerprints pairwise using Tanimoto similarity.
- Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
- Return a list of clusters, where each cluster is a list of SMILES strings.
Lösning
Tack för dina kommentarer!
single