Challenge: Apply the Estimator API
Swipe to start coding
You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.
Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.
- Create a
LogisticRegressionestimator withrandom_state=42. - Fit the estimator using the provided training data:
X_train;y_train.
- Use the fitted estimator to generate predictions for
X_test. - Store the predictions in the variable
y_pred.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Can you explain this in simpler terms?
What are the main benefits or drawbacks?
Can you give me a real-world example?
Fantastiskt!
Completion betyg förbättrat till 5.26
Challenge: Apply the Estimator API
Svep för att visa menyn
Swipe to start coding
You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.
Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.
- Create a
LogisticRegressionestimator withrandom_state=42. - Fit the estimator using the provided training data:
X_train;y_train.
- Use the fitted estimator to generate predictions for
X_test. - Store the predictions in the variable
y_pred.
Lösning
Tack för dina kommentarer!
single