Challenge: Data Fitting in Practice
Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.
Swipe to start coding
Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).
- Use
curve_fitto fitpoly_modelto the providedx_dataandy_data. - Retrieve the fitted parameters from the result of
curve_fit. - Return the parameters as a tuple
(a, b, c).
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 4.17
Challenge: Data Fitting in Practice
Svep för att visa menyn
Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.
Swipe to start coding
Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).
- Use
curve_fitto fitpoly_modelto the providedx_dataandy_data. - Retrieve the fitted parameters from the result of
curve_fit. - Return the parameters as a tuple
(a, b, c).
Lösning
Tack för dina kommentarer!
single