Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Inflation Rate Visualization | Economic Data Analysis with Python
Python for Economists

bookChallenge: Inflation Rate Visualization

You are ready to put your skills into practice by visualizing inflation rates for several countries across a decade. This challenge requires you to work with a hardcoded pandas DataFrame containing inflation data, and then use matplotlib to create a clear, informative line plot. Each country's inflation rate should be shown as a distinct line on the same plot, with a legend to identify them and properly labeled axes. This kind of visualization is essential for economists to quickly compare inflation trends across countries and time periods.

12345678910111213141516171819202122232425262728293031
import pandas as pd import matplotlib.pyplot as plt # Hardcoded inflation data for several countries over 10 years data = { "Year": [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021], "USA": [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7], "Germany": [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1], "Japan": [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2], "Brazil": [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7] } df = pd.DataFrame(data) def plot_inflation_rates(df): """ Plots inflation rates for each country over time. """ plt.figure(figsize=(10, 6)) for country in df.columns: if country != "Year": plt.plot(df["Year"], df[country], marker="o", label=country) plt.xlabel("Year") plt.ylabel("Inflation Rate (%)") plt.title("Inflation Rates by Country (2012-2021)") plt.legend() plt.grid(True) plt.tight_layout() plt.show() # Call the function to display the plot plot_inflation_rates(df)
copy
Uppgift

Swipe to start coding

Write a function called plot_inflation_rates that takes a pandas DataFrame with a "Year" column and one column per country (containing inflation rates). The function should:

  • Create a line plot using matplotlib.
  • Plot each country's inflation rate as a separate line on the same plot.
  • Add a legend to identify each country.
  • Label the x-axis as Year and the y-axis as Inflation Rate (%).
  • Display the plot.

Use the following DataFrame for testing:

  • Year: [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021].
  • USA: [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7].
  • Germany: [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1].
  • Japan: [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2].
  • Brazil: [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7].

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Inflation Rate Visualization

Svep för att visa menyn

You are ready to put your skills into practice by visualizing inflation rates for several countries across a decade. This challenge requires you to work with a hardcoded pandas DataFrame containing inflation data, and then use matplotlib to create a clear, informative line plot. Each country's inflation rate should be shown as a distinct line on the same plot, with a legend to identify them and properly labeled axes. This kind of visualization is essential for economists to quickly compare inflation trends across countries and time periods.

12345678910111213141516171819202122232425262728293031
import pandas as pd import matplotlib.pyplot as plt # Hardcoded inflation data for several countries over 10 years data = { "Year": [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021], "USA": [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7], "Germany": [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1], "Japan": [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2], "Brazil": [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7] } df = pd.DataFrame(data) def plot_inflation_rates(df): """ Plots inflation rates for each country over time. """ plt.figure(figsize=(10, 6)) for country in df.columns: if country != "Year": plt.plot(df["Year"], df[country], marker="o", label=country) plt.xlabel("Year") plt.ylabel("Inflation Rate (%)") plt.title("Inflation Rates by Country (2012-2021)") plt.legend() plt.grid(True) plt.tight_layout() plt.show() # Call the function to display the plot plot_inflation_rates(df)
copy
Uppgift

Swipe to start coding

Write a function called plot_inflation_rates that takes a pandas DataFrame with a "Year" column and one column per country (containing inflation rates). The function should:

  • Create a line plot using matplotlib.
  • Plot each country's inflation rate as a separate line on the same plot.
  • Add a legend to identify each country.
  • Label the x-axis as Year and the y-axis as Inflation Rate (%).
  • Display the plot.

Use the following DataFrame for testing:

  • Year: [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021].
  • USA: [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7].
  • Germany: [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1].
  • Japan: [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2].
  • Brazil: [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7].

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7
single

single

some-alt