Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Bayesian Optimization Overview | Advanced and Bayesian Tuning Techniques
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Hyperparameter Tuning Basics with Python

bookBayesian Optimization Overview

Bayesian optimization is an efficient method for hyperparameter tuning that uses probability and previous results to guide the search for the best values. Instead of randomly trying settings or checking every possibility, it builds a model to predict which hyperparameter choices are most promising. This approach focuses your search on areas likely to give better results, helping you find strong hyperparameters with fewer attempts.

Note
Definition

Acquisition functions guide Bayesian optimization by scoring which hyperparameters to try next using the current probabilistic model. Popular choices include:

  • Expected Improvement (EI): EI(x)=E[max(0,f(x)f(x+))]EI(x) = E[max(0, f(x) - f(x^+))]
  • Probability of Improvement (PI): PI(x)=P(f(x)>f(x+)+ξ)PI(x) = P(f(x) > f(x^+) + ξ)
  • Upper Confidence Bound (UCB): UCB(x)=μ(x)+κσ(x)UCB(x) = μ(x) + κ·σ(x)

Here, f(x+)f(x^+) is the best observed value, μ(x)μ(x) and σ(x)σ(x) are the model's predicted mean and standard deviation, and ξξ, κκ are tunable parameters.

1234567891011121314151617181920212223242526272829303132333435363738
# Conceptual workflow for Bayesian optimization (no external libraries) import numpy as np # Suppose we are tuning a single hyperparameter x in [0, 10] space = np.linspace(0, 10, 100) def objective_function(x): # Simulate a function to optimize (e.g., validation error) return (x - 3) ** 2 + np.sin(x) * 2 # Step 1: Initialize with a few random samples history = [] for x in np.random.uniform(0, 10, 3): y = objective_function(x) history.append((x, y)) # Step 2: Fit a simple model to predict objective as a function of x # (Here, we use a moving average just for illustration) def predict(x, history): # Use the closest measured value as prediction closest = min(history, key=lambda h: abs(h[0] - x)) return closest[1] # Step 3: Acquisition - choose next x to evaluate def acquisition(space, history): # Pick the point with lowest predicted objective predictions = [predict(x, history) for x in space] return space[np.argmin(predictions)] # Step 4: Iterate - update history with new evaluation for _ in range(5): x_next = acquisition(space, history) y_next = objective_function(x_next) history.append((x_next, y_next)) # Step 5: Report best found best_x, best_y = min(history, key=lambda h: h[1]) print(f"Best x: {best_x:.2f}, Best objective: {best_y:.2f}")
copy
question mark

What is the main advantage of Bayesian optimization over random search?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 1

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

bookBayesian Optimization Overview

Svep för att visa menyn

Bayesian optimization is an efficient method for hyperparameter tuning that uses probability and previous results to guide the search for the best values. Instead of randomly trying settings or checking every possibility, it builds a model to predict which hyperparameter choices are most promising. This approach focuses your search on areas likely to give better results, helping you find strong hyperparameters with fewer attempts.

Note
Definition

Acquisition functions guide Bayesian optimization by scoring which hyperparameters to try next using the current probabilistic model. Popular choices include:

  • Expected Improvement (EI): EI(x)=E[max(0,f(x)f(x+))]EI(x) = E[max(0, f(x) - f(x^+))]
  • Probability of Improvement (PI): PI(x)=P(f(x)>f(x+)+ξ)PI(x) = P(f(x) > f(x^+) + ξ)
  • Upper Confidence Bound (UCB): UCB(x)=μ(x)+κσ(x)UCB(x) = μ(x) + κ·σ(x)

Here, f(x+)f(x^+) is the best observed value, μ(x)μ(x) and σ(x)σ(x) are the model's predicted mean and standard deviation, and ξξ, κκ are tunable parameters.

1234567891011121314151617181920212223242526272829303132333435363738
# Conceptual workflow for Bayesian optimization (no external libraries) import numpy as np # Suppose we are tuning a single hyperparameter x in [0, 10] space = np.linspace(0, 10, 100) def objective_function(x): # Simulate a function to optimize (e.g., validation error) return (x - 3) ** 2 + np.sin(x) * 2 # Step 1: Initialize with a few random samples history = [] for x in np.random.uniform(0, 10, 3): y = objective_function(x) history.append((x, y)) # Step 2: Fit a simple model to predict objective as a function of x # (Here, we use a moving average just for illustration) def predict(x, history): # Use the closest measured value as prediction closest = min(history, key=lambda h: abs(h[0] - x)) return closest[1] # Step 3: Acquisition - choose next x to evaluate def acquisition(space, history): # Pick the point with lowest predicted objective predictions = [predict(x, history) for x in space] return space[np.argmin(predictions)] # Step 4: Iterate - update history with new evaluation for _ in range(5): x_next = acquisition(space, history) y_next = objective_function(x_next) history.append((x_next, y_next)) # Step 5: Report best found best_x, best_y = min(history, key=lambda h: h[1]) print(f"Best x: {best_x:.2f}, Best objective: {best_y:.2f}")
copy
question mark

What is the main advantage of Bayesian optimization over random search?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 1
some-alt