Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Integrate Dropout and BatchNorm | Regularization Techniques
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Optimization and Regularization in Neural Networks with Python

bookChallenge: Integrate Dropout and BatchNorm

Uppgift

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Integrate Dropout and BatchNorm

Svep för att visa menyn

Uppgift

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt