Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Standardization | Basic Concepts of PCA
Principal Component Analysis

Svep för att visa menyn

book
Standardization

Finally, let's start with the analysis of the PCA mathematical model.

First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0.

This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values ​​0-20 and 100-10,000, for example. PCA will start to "ignore" the characteristic with a small spread (0-20) and it will not be able to affect the result of the algorithm.

The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:

The scikit-learn Python library allows us to do this in 1 line:

python
Uppgift

Swipe to start coding

Implement standardization of X array using the numpy functions np.mean() and np.std().

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1
Vi beklagar att något gick fel. Vad hände?

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

book
Standardization

Finally, let's start with the analysis of the PCA mathematical model.

First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0.

This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values ​​0-20 and 100-10,000, for example. PCA will start to "ignore" the characteristic with a small spread (0-20) and it will not be able to affect the result of the algorithm.

The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:

The scikit-learn Python library allows us to do this in 1 line:

python
Uppgift

Swipe to start coding

Implement standardization of X array using the numpy functions np.mean() and np.std().

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt