Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Explore Dataset | Model Building
Principal Component Analysis

Svep för att visa menyn

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

# Importing library
from sklearn.datasets import load_wine

# Reading the dataset
data = load_wine()
X = data.data

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

# Importing library
import pandas as pd

# Checking for missing data
df = pd.DataFrame(X, columns = data.feature_names)
(df.isnull() | df.empty | df.isna()).sum()

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

df.describe()

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

# Importing class
from sklearn.preprocessing import StandardScaler

# Standardization
X_scaled = StandardScaler().fit_transform(X)
Uppgift

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 2
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 5.26

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

# Importing library
from sklearn.datasets import load_wine

# Reading the dataset
data = load_wine()
X = data.data

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

# Importing library
import pandas as pd

# Checking for missing data
df = pd.DataFrame(X, columns = data.feature_names)
(df.isnull() | df.empty | df.isna()).sum()

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

df.describe()

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

# Importing class
from sklearn.preprocessing import StandardScaler

# Standardization
X_scaled = StandardScaler().fit_transform(X)
Uppgift

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

close

Awesome!

Completion rate improved to 5.26

Svep för att visa menyn

some-alt