Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Automate Portfolio Metrics Calculation | Advanced Analysis and Automation for Investors
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Investors

bookChallenge: Automate Portfolio Metrics Calculation

Uppgift

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Automate Portfolio Metrics Calculation

Svep för att visa menyn

Uppgift

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 3
single

single

some-alt