Challenge: Predict Equipment Failure Time
Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.
Swipe to start coding
Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.
- Fit a linear regression model using
hours_listas input andfailure_days_listas output. - Retrieve the model coefficient and intercept.
- Use the model to predict the time-to-failure for the given
query_hours. - Return the coefficient, intercept, and prediction.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Fantastiskt!
Completion betyg förbättrat till 4.76
Challenge: Predict Equipment Failure Time
Svep för att visa menyn
Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.
Swipe to start coding
Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.
- Fit a linear regression model using
hours_listas input andfailure_days_listas output. - Retrieve the model coefficient and intercept.
- Use the model to predict the time-to-failure for the given
query_hours. - Return the coefficient, intercept, and prediction.
Lösning
Tack för dina kommentarer!
single