Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Predict Equipment Failure Time | Engineering Data Science Applications
Python for Engineers

bookChallenge: Predict Equipment Failure Time

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Uppgift

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Predict Equipment Failure Time

Svep för att visa menyn

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Uppgift

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt