Fantastiskt!
Completion betyg förbättrat till 2.33Avsnitt 3. Kapitel 4
single
Challenge 4: Altering DataFrame
Svep för att visa menyn
Pandas provides a plethora of tools that allow for easy modification of both data and structure of DataFrames. These capabilities are essential because:
- Data Cleaning: Real-world datasets are often messy. The ability to transform and clean data ensures its readiness for analysis.
- Versatility: Frequently, the structure of a dataset may not align with the requirements of a given task. Being able to reshape data can be a lifesaver.
- Efficiency: Direct modifications to DataFrames, as opposed to creating new ones, can save memory and improve performance.
Getting familiar with the techniques to alter data and the structure of DataFrames is a key step in becoming proficient with Pandas.
Uppgift
Swipe to start coding
Harness the power of Pandas to alter data and the structure of DataFrames:
- Add a new column to a DataFrame with values
Engineer,DoctorandArtist. - Rename columns in a DataFrame. Change the
Namecolumn intoFull Nameand theAgecolumn intoAge (years). - Drop a column
Cityfrom a DataFrame. - Sort a DataFrame based on the
Agecolumn (descending).
Lösning
Var allt tydligt?
Tack för dina kommentarer!
Avsnitt 3. Kapitel 4
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal