Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Solving Task Using Bagging Regressor | Commonly Used Bagging Models
Ensemble Learning

Svep för att visa menyn

book
Challenge: Solving Task Using Bagging Regressor

Uppgift

Swipe to start coding

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 4
Vi beklagar att något gick fel. Vad hände?

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

book
Challenge: Solving Task Using Bagging Regressor

Uppgift

Swipe to start coding

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 4
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt