Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Incident Frequency Visualizer | Data-Driven DevOps Decisions
Python for DevOps Beginners

bookChallenge: Incident Frequency Visualizer

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Uppgift

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

What are the steps to visualize incident data using Python and seaborn?

Can you provide an example of how to categorize incidents by type?

How can I interpret the results from the incident data visualization?

close

bookChallenge: Incident Frequency Visualizer

Svep för att visa menyn

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Uppgift

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt