Reading and Visualizing Data
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date
column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas
function to_datetime()
Let's take the dataset air_quality_no2_long.csv
as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date
column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv
dataset.
- Import
matplotlib.pyplot
asplt
. - Read the
csv
file and save it within thedata
variable. - Convert
"Month"
intodatetime
type. - Initialize a line plot with the
"Month"
column ofdata
on the x-axis and"#Passengers"
on the y-axis. - Set labels on an axis and display the plot:
"Month"
on the x-axis;"Passengers"
on the y-axis.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 3.85
Reading and Visualizing Data
Svep för att visa menyn
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date
column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas
function to_datetime()
Let's take the dataset air_quality_no2_long.csv
as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date
column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv
dataset.
- Import
matplotlib.pyplot
asplt
. - Read the
csv
file and save it within thedata
variable. - Convert
"Month"
intodatetime
type. - Initialize a line plot with the
"Month"
column ofdata
on the x-axis and"#Passengers"
on the y-axis. - Set labels on an axis and display the plot:
"Month"
on the x-axis;"Passengers"
on the y-axis.
Lösning
Tack för dina kommentarer!
Awesome!
Completion rate improved to 3.85single