Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Reading and Visualizing Data | Time Series Processing
Time Series Analysis
course content

Kursinnehåll

Time Series Analysis

Time Series Analysis

1. Time Series: Let's Start
2. Time Series Processing
3. Time Series Visualization
4. Stationary Models
5. Non-Stationary Models
6. Solve Real Problems

book
Reading and Visualizing Data

The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.

In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()

Let's take the dataset air_quality_no2_long.csv as an example:

python

Next, we convert the data type in the Date column from str to datetime:

python

You can also do this immediately when reading the dataset:

python

Now we can plot our dataset:

python
Uppgift

Swipe to start coding

Read and visualize the AirPassengers.csv dataset.

  1. Import matplotlib.pyplot as plt.
  2. Read the csv file and save it within the data variable.
  3. Convert "Month" into datetime type.
  4. Initialize a line plot with the "Month" column of data on the x-axis and "#Passengers" on the y-axis.
  5. Set labels on an axis and display the plot:
  • "Month" on the x-axis;
  • "Passengers" on the y-axis.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1
toggle bottom row

book
Reading and Visualizing Data

The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.

In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()

Let's take the dataset air_quality_no2_long.csv as an example:

python

Next, we convert the data type in the Date column from str to datetime:

python

You can also do this immediately when reading the dataset:

python

Now we can plot our dataset:

python
Uppgift

Swipe to start coding

Read and visualize the AirPassengers.csv dataset.

  1. Import matplotlib.pyplot as plt.
  2. Read the csv file and save it within the data variable.
  3. Convert "Month" into datetime type.
  4. Initialize a line plot with the "Month" column of data on the x-axis and "#Passengers" on the y-axis.
  5. Set labels on an axis and display the plot:
  • "Month" on the x-axis;
  • "Passengers" on the y-axis.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt