Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Churn Prediction Tool | Growth, Marketing, and Customer Insights
Python for Startup Founders

bookChallenge: Churn Prediction Tool

Churn prediction is a key application of data science in startups, enabling you to identify which customers are likely to leave and take proactive measures to retain them. By using machine learning models like logistic regression, you can analyze patterns in customer data and estimate the likelihood of churn. Equally important is understanding which features—such as usage frequency, account age, or support requests—most strongly influence the model's predictions. This knowledge empowers you to target interventions and optimize your product or service for customer retention.

Uppgift

Swipe to start coding

Build a churn prediction tool using logistic regression and scikit-learn.

  • Fit a logistic regression model to predict the churned label using the provided customer features.
  • Use the trained model to predict churn for the new_customers DataFrame.
  • Create a summary of feature importance for the churn prediction model, based on the absolute values of the model's coefficients.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Churn Prediction Tool

Svep för att visa menyn

Churn prediction is a key application of data science in startups, enabling you to identify which customers are likely to leave and take proactive measures to retain them. By using machine learning models like logistic regression, you can analyze patterns in customer data and estimate the likelihood of churn. Equally important is understanding which features—such as usage frequency, account age, or support requests—most strongly influence the model's predictions. This knowledge empowers you to target interventions and optimize your product or service for customer retention.

Uppgift

Swipe to start coding

Build a churn prediction tool using logistic regression and scikit-learn.

  • Fit a logistic regression model to predict the churned label using the provided customer features.
  • Use the trained model to predict churn for the new_customers DataFrame.
  • Create a summary of feature importance for the churn prediction model, based on the absolute values of the model's coefficients.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt