Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Signup Trend Analyzer | Analyzing User Behavior
Python for Growth Hackers

bookChallenge: Signup Trend Analyzer

When you want to identify peak signup periods and analyze user growth, you often need to look at the number of signups occurring each day. By doing this, you can spot trends, such as which days see the most activity, and use that insight to optimize your marketing efforts. In this challenge, you will write a Python script using pandas to create a DataFrame with hardcoded user signup dates, then calculate the number of signups per day and find the day with the highest number of signups.

123456789101112131415161718192021
import pandas as pd # Create a DataFrame with hardcoded signup dates data = { "user_id": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "signup_date": [ "2024-06-01", "2024-06-01", "2024-06-02", "2024-06-02", "2024-06-02", "2024-06-03", "2024-06-03", "2024-06-03", "2024-06-03", "2024-06-04" ] } df = pd.DataFrame(data) # Count signups per day signups_per_day = df["signup_date"].value_counts().sort_index() print("Signups per day:") print(signups_per_day) # Find the day with the highest number of signups peak_day = signups_per_day.idxmax() peak_count = signups_per_day.max() print(f"\nDay with the highest signups: {peak_day} ({peak_count} signups)")
copy
Note
Note

You can use this approach with real signup data by loading it from a CSV or database instead of hardcoding values. This lets you analyze trends over longer periods and across larger user bases.

Uppgift

Swipe to start coding

Write a script that:

  • Creates a pandas DataFrame with at least 12 user signups and their signup dates (use at least 4 different dates).
  • Calculates and prints the number of signups per day.
  • Identifies and prints the day with the most signups.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Signup Trend Analyzer

Svep för att visa menyn

When you want to identify peak signup periods and analyze user growth, you often need to look at the number of signups occurring each day. By doing this, you can spot trends, such as which days see the most activity, and use that insight to optimize your marketing efforts. In this challenge, you will write a Python script using pandas to create a DataFrame with hardcoded user signup dates, then calculate the number of signups per day and find the day with the highest number of signups.

123456789101112131415161718192021
import pandas as pd # Create a DataFrame with hardcoded signup dates data = { "user_id": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "signup_date": [ "2024-06-01", "2024-06-01", "2024-06-02", "2024-06-02", "2024-06-02", "2024-06-03", "2024-06-03", "2024-06-03", "2024-06-03", "2024-06-04" ] } df = pd.DataFrame(data) # Count signups per day signups_per_day = df["signup_date"].value_counts().sort_index() print("Signups per day:") print(signups_per_day) # Find the day with the highest number of signups peak_day = signups_per_day.idxmax() peak_count = signups_per_day.max() print(f"\nDay with the highest signups: {peak_day} ({peak_count} signups)")
copy
Note
Note

You can use this approach with real signup data by loading it from a CSV or database instead of hardcoding values. This lets you analyze trends over longer periods and across larger user bases.

Uppgift

Swipe to start coding

Write a script that:

  • Creates a pandas DataFrame with at least 12 user signups and their signup dates (use at least 4 different dates).
  • Calculates and prints the number of signups per day.
  • Identifies and prints the day with the most signups.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 3
single

single

some-alt