Challenge: Implementing a Random Forest
In this chapter, you will build a Random Forest using the same titanic dataset.
Also, you will calculate the cross-validation accuracy using the cross_val_score()
function
In the end, you will print the feature importances.
The feature_importances_
attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:
for f in zip(X.columns, model.feature_importances_):
print(f)
Swipe to start coding
- Import the
RandomForestClassifier
class. - Create an instance of a
RandomForestClassifier
class with default parameters and train it. - Print the cross-validation score with the
cv=10
of arandom_forest
you just built. - Print each feature's importance along with its name.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 3.57
Challenge: Implementing a Random Forest
Svep för att visa menyn
In this chapter, you will build a Random Forest using the same titanic dataset.
Also, you will calculate the cross-validation accuracy using the cross_val_score()
function
In the end, you will print the feature importances.
The feature_importances_
attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:
for f in zip(X.columns, model.feature_importances_):
print(f)
Swipe to start coding
- Import the
RandomForestClassifier
class. - Create an instance of a
RandomForestClassifier
class with default parameters and train it. - Print the cross-validation score with the
cv=10
of arandom_forest
you just built. - Print each feature's importance along with its name.
Lösning
Tack för dina kommentarer!
Awesome!
Completion rate improved to 3.57single