Challenge: Clean and Prepare Price Data
In trading, you often encounter price data with missing values. Properly cleaning and preparing this data is crucial before any analysis or modeling. You will work with a DataFrame containing daily closing prices, some of which are missing. Your task is to identify missing values, fill them using linear interpolation, and then compute basic statistics on the cleaned data. This process ensures your analysis reflects the true nature of the underlying price series, free from gaps that could distort calculations.
123456789101112131415161718192021222324252627282930313233import pandas as pd # Hardcoded DataFrame of closing prices with missing values data = { "Date": [ "2024-01-01", "2024-01-02", "2024-01-03", "2024-01-04", "2024-01-05", "2024-01-06", "2024-01-07" ], "Close": [ 101.5, None, 102.7, None, 104.2, 105.0, None ] } df = pd.DataFrame(data) df["Date"] = pd.to_datetime(df["Date"]) df.set_index("Date", inplace=True) # Detect missing values print("Missing values per day:") print(df.isnull()) # Fill missing values using linear interpolation df_filled = df.interpolate(method="linear") # Calculate mean and standard deviation of the cleaned price series mean_price = df_filled["Close"].mean() std_price = df_filled["Close"].std() # Print cleaned DataFrame and statistics print("\nCleaned closing prices (after interpolation):") print(df_filled) print("\nMean closing price:", mean_price) print("Standard deviation of closing price:", std_price)
Swipe to start coding
- Use the provided DataFrame with missing values.
- Identify which entries are missing.
- Fill missing values using linear interpolation.
- Calculate and print the mean and standard deviation of the cleaned price series.
- Print the cleaned DataFrame.
Your solution must use pandas. Do not modify the original data structure.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Can you explain how linear interpolation works in this context?
What would happen if there were missing values at the start or end of the series?
Can you show how to visualize the cleaned data?
Fantastiskt!
Completion betyg förbättrat till 4.76
Challenge: Clean and Prepare Price Data
Svep för att visa menyn
In trading, you often encounter price data with missing values. Properly cleaning and preparing this data is crucial before any analysis or modeling. You will work with a DataFrame containing daily closing prices, some of which are missing. Your task is to identify missing values, fill them using linear interpolation, and then compute basic statistics on the cleaned data. This process ensures your analysis reflects the true nature of the underlying price series, free from gaps that could distort calculations.
123456789101112131415161718192021222324252627282930313233import pandas as pd # Hardcoded DataFrame of closing prices with missing values data = { "Date": [ "2024-01-01", "2024-01-02", "2024-01-03", "2024-01-04", "2024-01-05", "2024-01-06", "2024-01-07" ], "Close": [ 101.5, None, 102.7, None, 104.2, 105.0, None ] } df = pd.DataFrame(data) df["Date"] = pd.to_datetime(df["Date"]) df.set_index("Date", inplace=True) # Detect missing values print("Missing values per day:") print(df.isnull()) # Fill missing values using linear interpolation df_filled = df.interpolate(method="linear") # Calculate mean and standard deviation of the cleaned price series mean_price = df_filled["Close"].mean() std_price = df_filled["Close"].std() # Print cleaned DataFrame and statistics print("\nCleaned closing prices (after interpolation):") print(df_filled) print("\nMean closing price:", mean_price) print("Standard deviation of closing price:", std_price)
Swipe to start coding
- Use the provided DataFrame with missing values.
- Identify which entries are missing.
- Fill missing values using linear interpolation.
- Calculate and print the mean and standard deviation of the cleaned price series.
- Print the cleaned DataFrame.
Your solution must use pandas. Do not modify the original data structure.
Lösning
Tack för dina kommentarer!
single