Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Build a Custom Candlestick Plot | Visualizing Market Trends and Indicators
Python for Traders

bookChallenge: Build a Custom Candlestick Plot

In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.

123456789101112131415161718192021222324252627282930313233343536373839404142434445
import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
copy
Note
Note

Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.

For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.

Uppgift

Swipe to start coding

Plot a candlestick chart using the provided DataFrame, following these steps:

  • Draw each candlestick with rectangles and lines using matplotlib.
  • Color each candle body green if close >= open, or red if close < open.
  • Annotate the chart with the highest high and lowest low values using ax.annotate.
  • Format the x-axis to display the dates from the DataFrame.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain how candlestick charts help identify bullish and bearish trends?

What do the annotations for the highest high and lowest low represent on the chart?

Can you walk me through how the code determines the color of each candlestick?

close

bookChallenge: Build a Custom Candlestick Plot

Svep för att visa menyn

In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.

123456789101112131415161718192021222324252627282930313233343536373839404142434445
import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
copy
Note
Note

Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.

For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.

Uppgift

Swipe to start coding

Plot a candlestick chart using the provided DataFrame, following these steps:

  • Draw each candlestick with rectangles and lines using matplotlib.
  • Color each candle body green if close >= open, or red if close < open.
  • Annotate the chart with the highest high and lowest low values using ax.annotate.
  • Format the x-axis to display the dates from the DataFrame.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
single

single

some-alt