Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Visualizing Returns and Volatility | Visualizing Market Trends and Indicators
Python for Traders

bookVisualizing Returns and Volatility

Understanding how to visualize returns and volatility is essential for any trader who wants to assess both risk and performance. Returns represent the percentage change in price from one period to the next, helping you see the gains or losses over time. Volatility, on the other hand, measures how much the price fluctuates, which is a direct indicator of risk. By plotting these metrics, you gain immediate insight into periods of calm or turbulence in the market, allowing you to spot patterns, identify unusual events, and make informed trading decisions.

1234567891011121314151617181920
import pandas as pd import matplotlib.pyplot as plt # Suppose 'prices' is a pandas Series of daily closing prices prices = pd.Series( [100, 102, 101, 105, 107, 106, 110, 108], index=pd.date_range("2024-01-01", periods=8) ) # Calculate daily returns returns = prices.pct_change().dropna() # Plot daily returns as a bar chart plt.figure(figsize=(8, 4)) returns.plot(kind="bar", color="skyblue") plt.title("Daily Returns") plt.ylabel("Return") plt.xlabel("Date") plt.tight_layout() plt.show()
copy

When you look at the bar chart of daily returns, spikes—both upward and downward—stand out immediately. These spikes often point to significant market events such as earnings announcements, economic news, or unexpected geopolitical developments. A large positive spike might indicate a strong rally or positive sentiment, while a sharp negative spike could reflect panic selling or a sudden downturn. Recognizing these patterns helps you understand how external events impact the market and prepares you to react appropriately in real time.

1234567891011121314151617181920212223
import numpy as np # Calculate rolling 3-day standard deviation (volatility) rolling_volatility = returns.rolling(window=3).std() # Plot price and rolling volatility fig, ax1 = plt.subplots(figsize=(8, 4)) color = "tab:blue" ax1.set_xlabel("Date") ax1.set_ylabel("Price", color=color) ax1.plot(prices.index[1:], prices[1:], color=color, label="Price") ax1.tick_params(axis="y", labelcolor=color) ax2 = ax1.twinx() # Secondary y-axis for volatility color = "tab:red" ax2.set_ylabel("Rolling Volatility", color=color) ax2.plot(rolling_volatility.index, rolling_volatility, color=color, linestyle="--", label="Rolling Volatility") ax2.tick_params(axis="y", labelcolor=color) plt.title("Price and Rolling Volatility") fig.tight_layout() plt.show()
copy

1. What does a spike in the returns bar chart typically indicate?

2. How is rolling standard deviation used to measure volatility?

question mark

What does a spike in the returns bar chart typically indicate?

Select the correct answer

question mark

How is rolling standard deviation used to measure volatility?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain how to interpret the rolling volatility plot?

What does a high or low volatility period mean for trading decisions?

Can you suggest other ways to visualize risk and returns?

bookVisualizing Returns and Volatility

Svep för att visa menyn

Understanding how to visualize returns and volatility is essential for any trader who wants to assess both risk and performance. Returns represent the percentage change in price from one period to the next, helping you see the gains or losses over time. Volatility, on the other hand, measures how much the price fluctuates, which is a direct indicator of risk. By plotting these metrics, you gain immediate insight into periods of calm or turbulence in the market, allowing you to spot patterns, identify unusual events, and make informed trading decisions.

1234567891011121314151617181920
import pandas as pd import matplotlib.pyplot as plt # Suppose 'prices' is a pandas Series of daily closing prices prices = pd.Series( [100, 102, 101, 105, 107, 106, 110, 108], index=pd.date_range("2024-01-01", periods=8) ) # Calculate daily returns returns = prices.pct_change().dropna() # Plot daily returns as a bar chart plt.figure(figsize=(8, 4)) returns.plot(kind="bar", color="skyblue") plt.title("Daily Returns") plt.ylabel("Return") plt.xlabel("Date") plt.tight_layout() plt.show()
copy

When you look at the bar chart of daily returns, spikes—both upward and downward—stand out immediately. These spikes often point to significant market events such as earnings announcements, economic news, or unexpected geopolitical developments. A large positive spike might indicate a strong rally or positive sentiment, while a sharp negative spike could reflect panic selling or a sudden downturn. Recognizing these patterns helps you understand how external events impact the market and prepares you to react appropriately in real time.

1234567891011121314151617181920212223
import numpy as np # Calculate rolling 3-day standard deviation (volatility) rolling_volatility = returns.rolling(window=3).std() # Plot price and rolling volatility fig, ax1 = plt.subplots(figsize=(8, 4)) color = "tab:blue" ax1.set_xlabel("Date") ax1.set_ylabel("Price", color=color) ax1.plot(prices.index[1:], prices[1:], color=color, label="Price") ax1.tick_params(axis="y", labelcolor=color) ax2 = ax1.twinx() # Secondary y-axis for volatility color = "tab:red" ax2.set_ylabel("Rolling Volatility", color=color) ax2.plot(rolling_volatility.index, rolling_volatility, color=color, linestyle="--", label="Rolling Volatility") ax2.tick_params(axis="y", labelcolor=color) plt.title("Price and Rolling Volatility") fig.tight_layout() plt.show()
copy

1. What does a spike in the returns bar chart typically indicate?

2. How is rolling standard deviation used to measure volatility?

question mark

What does a spike in the returns bar chart typically indicate?

Select the correct answer

question mark

How is rolling standard deviation used to measure volatility?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
some-alt