Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Clean Sales Data | Business Data Manipulation
Python for Business Analysts

bookChallenge: Clean Sales Data

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Uppgift

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Clean Sales Data

Svep för att visa menyn

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Uppgift

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

some-alt