Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Manual Feature Centering | Foundations of Feature Scaling
Feature Scaling and Normalization Deep Dive

bookChallenge: Manual Feature Centering

Uppgift

Swipe to start coding

You are given a small dataset X as a NumPy array of shape (n_samples, n_features). Your goal is to manually center each feature (column) by subtracting its mean, without using scikit-learn. Use vectorized NumPy operations.

  1. Compute the per-feature means as a 1D array feature_means of shape (n_features,).
  2. Create X_centered = X - feature_means using broadcasting.
  3. Compute column means of X_centered to verify they are approximately zero.
  4. Do not use loops and do not modify X in place.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Manual Feature Centering

Svep för att visa menyn

Uppgift

Swipe to start coding

You are given a small dataset X as a NumPy array of shape (n_samples, n_features). Your goal is to manually center each feature (column) by subtracting its mean, without using scikit-learn. Use vectorized NumPy operations.

  1. Compute the per-feature means as a 1D array feature_means of shape (n_features,).
  2. Create X_centered = X - feature_means using broadcasting.
  3. Compute column means of X_centered to verify they are approximately zero.
  4. Do not use loops and do not modify X in place.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
single

single

some-alt