Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Build a Preprocessing Pipeline | Choosing and Evaluating Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: Build a Preprocessing Pipeline

Uppgift

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Build a Preprocessing Pipeline

Svep för att visa menyn

Uppgift

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 3
single

single

some-alt