Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Selecting the Right Technique | Choosing and Evaluating Techniques
Feature Scaling and Normalization Deep Dive

bookSelecting the Right Technique

Feature scaling and normalization are essential preprocessing steps — but no single method is always best. The right technique depends on:

  • The algorithm you use;
  • The data distribution (shape, spread, correlation);
  • The goal (training stability, interpretability, or visualization).

Choosing wisely ensures that models train efficiently, converge faster, and behave predictably.

Note
Note

Quick Heuristics:

  • If your model uses distance metrics (e.g., KNN, K-means, SVMs), scaling is mandatory — otherwise, large-valued features dominate;
  • Tree-based models (Decision Trees, Random Forests, Gradient Boosting) are scale-invariant — you can skip scaling;
  • Standardization usually works as a safe default when unsure;
  • Whitening is powerful but computationally expensive — use it only when feature correlation clearly hurts performance.

A critical mistake in preprocessing pipelines is data leakage — computing scaling parameters (mean, std, min, max) on the entire dataset before splitting into train/test. This causes the model to “see” information from the test set during training.

Correct approach:

scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

Incorrect approach:

scaler.fit(X)  # fitting on the whole dataset

Always compute scaling parameters only on training data, then apply them to validation/test data.

question mark

Which statement best describes the correct use of feature scaling techniques?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 1

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain more about when to choose each scaling technique?

What are the consequences of using the wrong scaling method?

Can you give examples of data leakage in real-world scenarios?

Awesome!

Completion rate improved to 5.26

bookSelecting the Right Technique

Svep för att visa menyn

Feature scaling and normalization are essential preprocessing steps — but no single method is always best. The right technique depends on:

  • The algorithm you use;
  • The data distribution (shape, spread, correlation);
  • The goal (training stability, interpretability, or visualization).

Choosing wisely ensures that models train efficiently, converge faster, and behave predictably.

Note
Note

Quick Heuristics:

  • If your model uses distance metrics (e.g., KNN, K-means, SVMs), scaling is mandatory — otherwise, large-valued features dominate;
  • Tree-based models (Decision Trees, Random Forests, Gradient Boosting) are scale-invariant — you can skip scaling;
  • Standardization usually works as a safe default when unsure;
  • Whitening is powerful but computationally expensive — use it only when feature correlation clearly hurts performance.

A critical mistake in preprocessing pipelines is data leakage — computing scaling parameters (mean, std, min, max) on the entire dataset before splitting into train/test. This causes the model to “see” information from the test set during training.

Correct approach:

scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

Incorrect approach:

scaler.fit(X)  # fitting on the whole dataset

Always compute scaling parameters only on training data, then apply them to validation/test data.

question mark

Which statement best describes the correct use of feature scaling techniques?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 1
some-alt