Parallel Algorithms
Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.
Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.
main.cpp
1234567891011121314151617181920#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }
Performance
Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.
Determinism
Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.
Tack för dina kommentarer!
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Can you give an example of using parallel algorithms in C++?
What are some common pitfalls when using parallel execution in C++?
How do I choose between parallel and sequential algorithms?
Awesome!
Completion rate improved to 7.69
Parallel Algorithms
Svep för att visa menyn
Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.
Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.
main.cpp
1234567891011121314151617181920#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }
Performance
Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.
Determinism
Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.
Tack för dina kommentarer!