Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Preprocessing Pipeline | Section
Practice
Projects
Quizzes & Challenges
Frågesporter
Challenges
/
Data Preprocessing and Feature Engineering

bookChallenge: Preprocessing Pipeline

Uppgift

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 12
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Preprocessing Pipeline

Svep för att visa menyn

Uppgift

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 12
single

single

some-alt