Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Data Cleaning | Section
Practice
Projects
Quizzes & Challenges
Frågesporter
Challenges
/
Data Preprocessing and Feature Engineering

bookChallenge: Data Cleaning

Uppgift

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Data Cleaning

Svep för att visa menyn

Uppgift

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
single

single

some-alt