Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Initial Model Fit | Fake News
Identifying Fake News

book
Initial Model Fit

Now that we have prepared our data, the time has come to train our algorithm. We will start by splitting our data into training and testing sets, then train a Logistic Regression model as a starting point for our analysis.

Uppgift

Swipe to start coding

  1. Split the data into training and test sets (75% to 25%, respectively).
  2. Use the appropriate method to train the Logistic Regression model.
  3. Make predictions using the Logistic Regression model on the test set.

Lösning

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(texts_vectorized, news['class'], test_size=0.25)

lr = LogisticRegression()

# Train the Logistic Regression model
lr.fit(X_train, y_train)

# Make predictions on the test set
pred_lr = lr.predict(X_test)

lr.score(X_test, y_test)

Mark tasks as Completed
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 5

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

some-alt