Challenge: Map Local News Events
Mapping local news events is a powerful way to tell stories visually, allowing audiences to quickly grasp the scope, distribution, and types of incidents occurring in their communities. By placing events on a map according to their geographic coordinates, you can reveal patterns and clusters that might otherwise go unnoticed in raw data tables. This approach is especially valuable for journalists aiming to contextualize news, highlight hotspots, or draw attention to trends across neighborhoods or regions.
12345678910111213141516171819202122232425262728import pandas as pd import matplotlib.pyplot as plt # Sample DataFrame of local news events data = { "event": ["Burglary", "Town Hall", "Charity Run", "Robbery", "Election Rally", "Food Drive"], "type": ["crime", "politics", "community", "crime", "politics", "community"], "latitude": [40.7128, 40.7135, 40.7150, 40.7142, 40.7130, 40.7160], "longitude": [-74.0060, -74.0050, -74.0070, -74.0045, -74.0080, -74.0030] } df = pd.DataFrame(data) # Assign a color to each event type color_map = {"crime": "red", "politics": "blue", "community": "green"} df["color"] = df["type"].map(color_map) # Plotting the events plt.figure(figsize=(8, 6)) for event_type in df["type"].unique(): subset = df[df["type"] == event_type] plt.scatter(subset["longitude"], subset["latitude"], c=subset["color"], label=event_type.capitalize(), s=100, edgecolor="black") plt.title("Local News Events Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.legend(title="Event Type") plt.show()
Using color-coding for different event types makes the map much easier to interpret at a glance. When each category—such as crime, politics, or community—is assigned a distinct color, you can quickly identify clusters, outliers, or locations where certain types of events are more common. This not only improves the visual appeal of your map but also helps your audience draw meaningful conclusions from the data.
Swipe to start coding
Write a function that takes a DataFrame of local news events and produces a scatter plot map.
- Plot each event as a point using its longitude and latitude.
- Assign a unique color to each event type category.
- Include a legend that explains the color for each event type.
- Add a title to the map.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Fantastiskt!
Completion betyg förbättrat till 4.76
Challenge: Map Local News Events
Svep för att visa menyn
Mapping local news events is a powerful way to tell stories visually, allowing audiences to quickly grasp the scope, distribution, and types of incidents occurring in their communities. By placing events on a map according to their geographic coordinates, you can reveal patterns and clusters that might otherwise go unnoticed in raw data tables. This approach is especially valuable for journalists aiming to contextualize news, highlight hotspots, or draw attention to trends across neighborhoods or regions.
12345678910111213141516171819202122232425262728import pandas as pd import matplotlib.pyplot as plt # Sample DataFrame of local news events data = { "event": ["Burglary", "Town Hall", "Charity Run", "Robbery", "Election Rally", "Food Drive"], "type": ["crime", "politics", "community", "crime", "politics", "community"], "latitude": [40.7128, 40.7135, 40.7150, 40.7142, 40.7130, 40.7160], "longitude": [-74.0060, -74.0050, -74.0070, -74.0045, -74.0080, -74.0030] } df = pd.DataFrame(data) # Assign a color to each event type color_map = {"crime": "red", "politics": "blue", "community": "green"} df["color"] = df["type"].map(color_map) # Plotting the events plt.figure(figsize=(8, 6)) for event_type in df["type"].unique(): subset = df[df["type"] == event_type] plt.scatter(subset["longitude"], subset["latitude"], c=subset["color"], label=event_type.capitalize(), s=100, edgecolor="black") plt.title("Local News Events Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.legend(title="Event Type") plt.show()
Using color-coding for different event types makes the map much easier to interpret at a glance. When each category—such as crime, politics, or community—is assigned a distinct color, you can quickly identify clusters, outliers, or locations where certain types of events are more common. This not only improves the visual appeal of your map but also helps your audience draw meaningful conclusions from the data.
Swipe to start coding
Write a function that takes a DataFrame of local news events and produces a scatter plot map.
- Plot each event as a point using its longitude and latitude.
- Assign a unique color to each event type category.
- Include a legend that explains the color for each event type.
- Add a title to the map.
Lösning
Tack för dina kommentarer!
single