Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Grouping in pandas [2/2] | Grouping Data
Data Manipulation using pandas

bookGrouping in pandas [2/2]

As you saw in the previous chapter, you received one number per group. But what will be the result after applying, for example, the .mean() method? Let's find out!

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh').mean())
copy

As you can see, you received means for all numerical columns. If you want to get aggregated statistics for only certain columns, make a selection right after applying the .groupby() function. For example, for each value of the 'morth' column we want to know average values of 'valueh', 'grosrth', 'omphtotinch' columns.

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh')[['valueh', 'grosrth', 'omphtotinch']].mean())
copy

This time output looks much better. You got means for only selected columns. Zeros as means appeared as the result of house being mortgaged or not.

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Awesome!

Completion rate improved to 2.56

bookGrouping in pandas [2/2]

Svep för att visa menyn

As you saw in the previous chapter, you received one number per group. But what will be the result after applying, for example, the .mean() method? Let's find out!

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh').mean())
copy

As you can see, you received means for all numerical columns. If you want to get aggregated statistics for only certain columns, make a selection right after applying the .groupby() function. For example, for each value of the 'morth' column we want to know average values of 'valueh', 'grosrth', 'omphtotinch' columns.

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh')[['valueh', 'grosrth', 'omphtotinch']].mean())
copy

This time output looks much better. You got means for only selected columns. Zeros as means appeared as the result of house being mortgaged or not.

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
some-alt