Simultaneous Replacement
The method described in the previous chapter allows you to replace specific values in one column 'manually'. But we need to perform replacements in 4 columns, which means we need to repeat the actions at least 3 more times.
However, pandas
predicted that task, too. Let's consider the method that allows to perform replacement for all dataframe columns.
1df.where(condition, other = values_to_replace, inplace = False)
Explanation: condition
is the first parameter, if True
, then keeps original values, if False
, then replaces them by values specified in the other
parameter. inplace
- if True
, then rewrites the data. If you want to 'revert' the condition to opposite, place the ~
symbol in front of it. For instance, let's replace all the zeros with the word null
.
12345678# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data1.csv') # Replace 0s by words 'null' df = df.where(~(df == 0), other = 'null') print(df)
As you can see, there are many 'null'
s appeared in the dataframe. If you remove the ~
symbol within the .where()
method, then all values but 0
will be replaced to 'null'
.
Tack för dina kommentarer!
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 2.56
Simultaneous Replacement
Svep för att visa menyn
The method described in the previous chapter allows you to replace specific values in one column 'manually'. But we need to perform replacements in 4 columns, which means we need to repeat the actions at least 3 more times.
However, pandas
predicted that task, too. Let's consider the method that allows to perform replacement for all dataframe columns.
1df.where(condition, other = values_to_replace, inplace = False)
Explanation: condition
is the first parameter, if True
, then keeps original values, if False
, then replaces them by values specified in the other
parameter. inplace
- if True
, then rewrites the data. If you want to 'revert' the condition to opposite, place the ~
symbol in front of it. For instance, let's replace all the zeros with the word null
.
12345678# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data1.csv') # Replace 0s by words 'null' df = df.where(~(df == 0), other = 'null') print(df)
As you can see, there are many 'null'
s appeared in the dataframe. If you remove the ~
symbol within the .where()
method, then all values but 0
will be replaced to 'null'
.
Tack för dina kommentarer!