Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge | Building and Training Model
Explore the Linear Regression Using Python
course content

Kursinnehåll

Explore the Linear Regression Using Python

Explore the Linear Regression Using Python

1. What is the Linear Regression?
2. Correlation
3. Building and Training Model
4. Metrics to Evaluate the Model
5. Multivariate Linear Regression

book
Challenge

Let’s combine our knowledge!

Uppgift

Swipe to start coding

In this task, you build, train and fit your model and make predictions based on it. This time you will make predictions about total_phenols, based on flavanoids. It means that your target now is total_phenols.

Your plan:

  1. [Line #18] Define the target (in this task it's total_phenols).
  2. [Line #25] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  3. [Line #26] Initialize linear regression model .
  4. [Line #27] Fit the model using your tain data.
  5. [Line #30] Assign np.array() to the variable new_flavanoids if their number is 1 (don't forget to use function .reshape(-1,1)).
  6. [Line #31] Predict and assign the amount of flavanoids to the variable predicted_value.
  7. [Line #32] Print the predicted amount of flavanoids.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
toggle bottom row

book
Challenge

Let’s combine our knowledge!

Uppgift

Swipe to start coding

In this task, you build, train and fit your model and make predictions based on it. This time you will make predictions about total_phenols, based on flavanoids. It means that your target now is total_phenols.

Your plan:

  1. [Line #18] Define the target (in this task it's total_phenols).
  2. [Line #25] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  3. [Line #26] Initialize linear regression model .
  4. [Line #27] Fit the model using your tain data.
  5. [Line #30] Assign np.array() to the variable new_flavanoids if their number is 1 (don't forget to use function .reshape(-1,1)).
  6. [Line #31] Predict and assign the amount of flavanoids to the variable predicted_value.
  7. [Line #32] Print the predicted amount of flavanoids.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt