Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Implement and Compare Root-Finding Methods | Core Numerical Algorithms
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: Implement and Compare Root-Finding Methods

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Uppgift

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain how the bisection method works step by step?

What are the advantages and disadvantages of the Newton-Raphson method?

Can you provide example functions where these methods are commonly used?

close

bookChallenge: Implement and Compare Root-Finding Methods

Svep för att visa menyn

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Uppgift

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 4
single

single

some-alt