Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: ODE Solver Accuracy and Stability | Differential Equations and Dynamic Systems
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: ODE Solver Accuracy and Stability

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Uppgift

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: ODE Solver Accuracy and Stability

Svep för att visa menyn

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Uppgift

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
single

single

some-alt