Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Classification Metrics | Classification Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Classification Metrics

Uppgift

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Classification Metrics

Svep för att visa menyn

Uppgift

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7
single

single

some-alt