Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Visualizing Campaign Results with matplotlib | Data Analysis for Campaign Performance
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Digital Agencies

bookVisualizing Campaign Results with matplotlib

Visualizing data is a key part of communicating campaign performance to clients and team members. Well-designed charts and graphs can quickly highlight trends, successes, and areas for improvement, making complex results understandable at a glance. For digital agencies, effective visualizations support compelling client presentations and drive better internal analysis, helping you make informed decisions and clearly demonstrate your value.

123456789101112131415161718
import pandas as pd import matplotlib.pyplot as plt # Sample campaign data data = { "Campaign": ["Spring Launch", "Summer Sale", "Fall Promo", "Winter Closeout"], "Impressions": [12000, 18000, 15000, 10000] } df = pd.DataFrame(data) # Create a bar chart for campaign impressions plt.figure(figsize=(8, 5)) plt.bar(df["Campaign"], df["Impressions"], color="skyblue") plt.title("Campaign Impressions") plt.xlabel("Campaign") plt.ylabel("Impressions") plt.tight_layout() plt.show()
copy

The process of plotting with matplotlib begins by preparing your data, often with pandas. You then choose the appropriate chart type—such as a bar chart for comparing campaign impressions. Customizing your chart is important for clarity: set a descriptive title, label the axes, and select colors that make the information easy to interpret. Using plt.tight_layout() ensures nothing overlaps, and plt.show() displays the final result. These steps help you create professional visuals tailored to your audience.

123456789101112131415161718192021222324252627282930
import pandas as pd import matplotlib.pyplot as plt # Sample campaign data with conversion rates data = { "Campaign": ["Spring Launch", "Summer Sale", "Fall Promo", "Winter Closeout"], "Impressions": [12000, 18000, 15000, 10000], "Conversion Rate": [0.04, 0.05, 0.045, 0.03] } df = pd.DataFrame(data) fig, ax1 = plt.subplots(figsize=(8, 5)) # Bar chart for impressions bars = ax1.bar(df["Campaign"], df["Impressions"], color="skyblue", label="Impressions") ax1.set_xlabel("Campaign") ax1.set_ylabel("Impressions") ax1.set_title("Campaign Impressions and Conversion Rates") # Line plot for conversion rates ax2 = ax1.twinx() ax2.plot(df["Campaign"], df["Conversion Rate"], color="red", marker="o", label="Conversion Rate") ax2.set_ylabel("Conversion Rate") # Add legends ax1.legend(loc="upper left") ax2.legend(loc="upper right") plt.tight_layout() plt.show()
copy

1. Why are visualizations important in campaign reporting?

2. What does plt.bar() do in matplotlib?

3. How can you display multiple metrics on a single chart?

question mark

Why are visualizations important in campaign reporting?

Select the correct answer

question mark

What does plt.bar() do in matplotlib?

Select the correct answer

question mark

How can you display multiple metrics on a single chart?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

bookVisualizing Campaign Results with matplotlib

Свайпніть щоб показати меню

Visualizing data is a key part of communicating campaign performance to clients and team members. Well-designed charts and graphs can quickly highlight trends, successes, and areas for improvement, making complex results understandable at a glance. For digital agencies, effective visualizations support compelling client presentations and drive better internal analysis, helping you make informed decisions and clearly demonstrate your value.

123456789101112131415161718
import pandas as pd import matplotlib.pyplot as plt # Sample campaign data data = { "Campaign": ["Spring Launch", "Summer Sale", "Fall Promo", "Winter Closeout"], "Impressions": [12000, 18000, 15000, 10000] } df = pd.DataFrame(data) # Create a bar chart for campaign impressions plt.figure(figsize=(8, 5)) plt.bar(df["Campaign"], df["Impressions"], color="skyblue") plt.title("Campaign Impressions") plt.xlabel("Campaign") plt.ylabel("Impressions") plt.tight_layout() plt.show()
copy

The process of plotting with matplotlib begins by preparing your data, often with pandas. You then choose the appropriate chart type—such as a bar chart for comparing campaign impressions. Customizing your chart is important for clarity: set a descriptive title, label the axes, and select colors that make the information easy to interpret. Using plt.tight_layout() ensures nothing overlaps, and plt.show() displays the final result. These steps help you create professional visuals tailored to your audience.

123456789101112131415161718192021222324252627282930
import pandas as pd import matplotlib.pyplot as plt # Sample campaign data with conversion rates data = { "Campaign": ["Spring Launch", "Summer Sale", "Fall Promo", "Winter Closeout"], "Impressions": [12000, 18000, 15000, 10000], "Conversion Rate": [0.04, 0.05, 0.045, 0.03] } df = pd.DataFrame(data) fig, ax1 = plt.subplots(figsize=(8, 5)) # Bar chart for impressions bars = ax1.bar(df["Campaign"], df["Impressions"], color="skyblue", label="Impressions") ax1.set_xlabel("Campaign") ax1.set_ylabel("Impressions") ax1.set_title("Campaign Impressions and Conversion Rates") # Line plot for conversion rates ax2 = ax1.twinx() ax2.plot(df["Campaign"], df["Conversion Rate"], color="red", marker="o", label="Conversion Rate") ax2.set_ylabel("Conversion Rate") # Add legends ax1.legend(loc="upper left") ax2.legend(loc="upper right") plt.tight_layout() plt.show()
copy

1. Why are visualizations important in campaign reporting?

2. What does plt.bar() do in matplotlib?

3. How can you display multiple metrics on a single chart?

question mark

Why are visualizations important in campaign reporting?

Select the correct answer

question mark

What does plt.bar() do in matplotlib?

Select the correct answer

question mark

How can you display multiple metrics on a single chart?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
some-alt