Challenge: LOF in Practice
Swipe to start coding
You are given a 2D dataset with clusters and some outliers.
Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).
Steps:
- Import and initialize
LocalOutlierFactorwithn_neighbors=20,contamination=0.1. - Fit the model on
Xand obtain predictions via.fit_predict(X). - Extract negative outlier factor values (
model.negative_outlier_factor_). - Print the number of detected outliers and example scores.
Remember:
-1= outlier;1= inlier.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Can you explain that in simpler terms?
What are the main benefits of this approach?
Are there any common mistakes to avoid with this?
Чудово!
Completion показник покращився до 4.55
Challenge: LOF in Practice
Свайпніть щоб показати меню
Swipe to start coding
You are given a 2D dataset with clusters and some outliers.
Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).
Steps:
- Import and initialize
LocalOutlierFactorwithn_neighbors=20,contamination=0.1. - Fit the model on
Xand obtain predictions via.fit_predict(X). - Extract negative outlier factor values (
model.negative_outlier_factor_). - Print the number of detected outliers and example scores.
Remember:
-1= outlier;1= inlier.
Рішення
Дякуємо за ваш відгук!
single