Challenge: One-Class SVM for Novelty Detection
Swipe to start coding
You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.
Follow these steps:
- Import and initialize
OneClassSVMfromsklearn.svm.- Use
kernel='rbf',gamma=0.1,nu=0.05.
- Use
- Fit the model on normal data only (
X_train). - Predict labels for test data (
X_test).- Label meaning:
1→ normal,-1→ novel/anomalous.
- Label meaning:
- Compute the fraction of anomalies in
X_test. - Print:
- Shapes of train/test sets.
- Number and fraction of anomalies detected.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Can you explain this in simpler terms?
What are the main takeaways from this?
Can you give me an example?
Чудово!
Completion показник покращився до 4.55
Challenge: One-Class SVM for Novelty Detection
Свайпніть щоб показати меню
Swipe to start coding
You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.
Follow these steps:
- Import and initialize
OneClassSVMfromsklearn.svm.- Use
kernel='rbf',gamma=0.1,nu=0.05.
- Use
- Fit the model on normal data only (
X_train). - Predict labels for test data (
X_test).- Label meaning:
1→ normal,-1→ novel/anomalous.
- Label meaning:
- Compute the fraction of anomalies in
X_test. - Print:
- Shapes of train/test sets.
- Number and fraction of anomalies detected.
Рішення
Дякуємо за ваш відгук!
single