Зміст курсу
Data Anomaly Detection
Data Anomaly Detection
2. Statistical Methods in Anomaly Detection
Challenge: Outlier Detection Using MAD Rule
Завдання
Swipe to show code editor
Now, you will use the MAD rule to detect outliers in the California Housing Dataset. It contains various features related to housing characteristics in different districts in California.
In this task, we will detect outliers in the column MedInc
, which stands for Median Income.
Your task is to:
- Fill in all gaps in
mad()
function to calculate Mean Absolute Deviation. - Calculate the threshold using value
3
as a threshold value. - Specify the rule to detect outliers that will be stored in the
outliers
variable.
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 6
Challenge: Outlier Detection Using MAD Rule
Завдання
Swipe to show code editor
Now, you will use the MAD rule to detect outliers in the California Housing Dataset. It contains various features related to housing characteristics in different districts in California.
In this task, we will detect outliers in the column MedInc
, which stands for Median Income.
Your task is to:
- Fill in all gaps in
mad()
function to calculate Mean Absolute Deviation. - Calculate the threshold using value
3
as a threshold value. - Specify the rule to detect outliers that will be stored in the
outliers
variable.
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 6
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів