Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Visualize Feature Impact | Product Experimentation and Hypothesis Testing
Python for Product Managers

bookChallenge: Visualize Feature Impact

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Завдання

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Visualize Feature Impact

Свайпніть щоб показати меню

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Завдання

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

some-alt