Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Analyze A/B Test Results | Product Experimentation and Hypothesis Testing
Python for Product Managers

bookChallenge: Analyze A/B Test Results

As you work with product experiments, it is crucial to accurately interpret the results of A/B tests to inform your product decisions. To recap, the conversion rate for each group is calculated as the number of conversions divided by the total number of users in that group. Once you have these rates, you can use a statistical test to determine if the difference between the groups is meaningful. The independent t-test from the scipy.stats module is commonly used for this purpose, as it helps you assess whether the observed difference in conversion rates is statistically significant and unlikely to be due to random chance. A low p-value (commonly below 0.05) suggests you can be confident in the result.

123456789101112131415161718192021222324
from scipy.stats import ttest_ind # Example conversion data for control and variant groups control_conversions = [0, 1, 0, 1, 0, 0, 1, 0, 1, 0] variant_conversions = [1, 1, 1, 0, 1, 1, 0, 1, 1, 1] control_rate = sum(control_conversions) / len(control_conversions) variant_rate = sum(variant_conversions) / len(variant_conversions) t_stat, p_value = ttest_ind(control_conversions, variant_conversions) summary = ( f"Control conversion rate: {control_rate:.2%}\n" f"Variant conversion rate: {variant_rate:.2%}\n" f"T-test p-value: {p_value:.4f}\n" ) if p_value < 0.05: summary += "Result: Statistically significant difference detected. Recommend adopting the variant." else: summary += "Result: No statistically significant difference detected. Recommend keeping the control." print(summary)
copy
Завдання

Swipe to start coding

Write a function that takes two lists representing conversions for a control group and a variant group in an A/B test and prints a summary for a product decision meeting.

  • Calculate the conversion rate for the control group.
  • Calculate the conversion rate for the variant group.
  • Use ttest_ind from scipy.stats to determine the p-value for the difference in conversion rates.
  • Print a summary that includes both conversion rates, the p-value, and a product recommendation based on the statistical significance.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Analyze A/B Test Results

Свайпніть щоб показати меню

As you work with product experiments, it is crucial to accurately interpret the results of A/B tests to inform your product decisions. To recap, the conversion rate for each group is calculated as the number of conversions divided by the total number of users in that group. Once you have these rates, you can use a statistical test to determine if the difference between the groups is meaningful. The independent t-test from the scipy.stats module is commonly used for this purpose, as it helps you assess whether the observed difference in conversion rates is statistically significant and unlikely to be due to random chance. A low p-value (commonly below 0.05) suggests you can be confident in the result.

123456789101112131415161718192021222324
from scipy.stats import ttest_ind # Example conversion data for control and variant groups control_conversions = [0, 1, 0, 1, 0, 0, 1, 0, 1, 0] variant_conversions = [1, 1, 1, 0, 1, 1, 0, 1, 1, 1] control_rate = sum(control_conversions) / len(control_conversions) variant_rate = sum(variant_conversions) / len(variant_conversions) t_stat, p_value = ttest_ind(control_conversions, variant_conversions) summary = ( f"Control conversion rate: {control_rate:.2%}\n" f"Variant conversion rate: {variant_rate:.2%}\n" f"T-test p-value: {p_value:.4f}\n" ) if p_value < 0.05: summary += "Result: Statistically significant difference detected. Recommend adopting the variant." else: summary += "Result: No statistically significant difference detected. Recommend keeping the control." print(summary)
copy
Завдання

Swipe to start coding

Write a function that takes two lists representing conversions for a control group and a variant group in an A/B test and prints a summary for a product decision meeting.

  • Calculate the conversion rate for the control group.
  • Calculate the conversion rate for the variant group.
  • Use ttest_ind from scipy.stats to determine the p-value for the difference in conversion rates.
  • Print a summary that includes both conversion rates, the p-value, and a product recommendation based on the statistical significance.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

some-alt