Choosing the Criterion
The preprocessed file is already put in the code editor!
As we did with the first A/B test, we will do it now. We need to:
Look at the distribution of the data;
Choosing the table below decide what criterion to select for the work.
Завдання
Swipe to start coding
- Import the
seaborn
with thesns
alias. - Import the
scipy
. - Import the
statsmodels.api
with thesm
alias. - Build the
distplot
using thesns
library and the'contact_views_number'
column. - Build the
qqplot
using thesm
library and the'contact_views_number'
column. - Perform the
normaltest
with the'contact_views_number'
column.
Рішення
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Importing the pandas
import pandas as pd
# Import the seaborn
import seaborn as sns
# Import the scipy
import scipy
# Import the statsmodels.api
import statsmodels.api as sm
# Reading the file
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/1e089012-bfcf-4d61-9ac9-bb649ece39f2/abtest_with_changes.csv')
# Build the distplot
sns.distplot(df.contact_views_number)
# Build the qqplot
sm.qqplot(df.contact_views_number, line = 's')
# Perform the normaltest
print(scipy.stats.normaltest(df.contact_views_number))
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 3. Розділ 4
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Importing the pandas
import pandas as pd
# Import the seaborn
import ___ as sns
# Import the scipy
import ___
# Import the statsmodels.api
import ___.api as ___
# Reading the file
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/1e089012-bfcf-4d61-9ac9-bb649ece39f2/abtest_with_changes.csv')
# Build the distplot
sns.___(df.___)
# Build the qqplot
sm.___(___.___, line = 's')
# Perform the normaltest
print(scipy.stats.___(df.___))
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат