Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Impute Missing Values with Mean | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Impute Missing Values with Mean

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Завдання

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Impute Missing Values with Mean

Свайпніть щоб показати меню

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Завдання

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

some-alt